Early-warning system study to monitor plankton and algae numbers could be “real breakthrough”

editorial staff

Creating a low-cost sensor system that can automatically sample, identify, and count specific microscopic organisms using imaging analysis detect dangerous plankton and algae.

In a press release on Friday, the Scottish Aquaculture Innovation Centre (SAIC) reports that it is working alongside a Scottish consortium comprising marine technology provider Otaq, the Iain Fraser Cytometry Centre at Aberdeen University, and Censis (the Innovation Centre for sensor and imaging systems and Internet of Things technologies) on an early-warning system which could help the aquaculture industry tackle one of the biggest challenges to fish health and wellbeing.

Major issue
To illustrate the severity of the issue, in April, Mowi Scotland’s operations director told SalmonBusiness there were plankton and jellyfish coming in from the Atlantic that the fish farmer had never seen before :”We are seeing a lot of new species – which are bringing new viruses we don’t even understand yet. We are seeing new syndromes in the fish from the new planktonic species, it’ll take years before we identify them,” he said.

Algae and plankton build-up is a major issue in aquaculture – some types of the organisms are toxic to salmon and others, in large quantities, can cause fatal gill damage. Algal blooms, the rapid growth of algae, can occur when there are significant changes to temperature, light, or nutrient conditions. In 2019, a particularly severe case in Norway led to the loss of a substantial number of fish.

Using microscope camera technology and a unique water sampling tool, OTAQ’s new system will use artificial intelligence (AI) deep learning to process images and provide a near real-time reading for fish farmers. The producers can then take preventative measures, such as the activation of a ‘bubble curtain’ or barrier to protect a stretch of water or stop feeding salmon when necessary.

Better safeguard stocks
The system is expected to enhance fish wellbeing and better safeguard stocks, improve the use of feed, as well as helping to make the entire water quality monitoring process more efficient and cost effective for producers. OTAQ said several companies have already expressed an interest in the new technology.

OTAQ chief commercial officer at OTAQ Chris Hyde said: “Plankton and algae are a significant problem for the aquaculture industry – substantial stocks of salmon have been lost in the past few years, from Norway to Chile, because of the issue. Early detection of harmful species of plankton and algae has been a sticking point and we’re looking to overcome that problem with our new sensing technology, which will fundamentally automate the process and provide accurate information about plankton numbers 24 hours a day”.

“The development of the sensors is the first step towards a more comprehensive early-warning system. This is a strategically important product for us, which will offer salmon farms a better view of what’s happening on their sites and extra data with which they can make decisions – many businesses have already said they need it. The involvement of two of Scotland’s innovation centres and the University of Aberdeen has accelerated the development process significantly and provided us with the scientific grounding to produce accurate, actionable data.”

Head of the Iain Fraser Cytometry Centre at the University of Aberdeen Dr Raif Yuecel added: “Flow cytometry is a well-established and routinely used quantitative technology to study phytoplankton and algae. The Iain Fraser Cytometry Centre (IFCC) is a state-of-the-art cytometry facility and therefore is the ideal partner to collaborate with OTAQ on this exciting project that will advance an essential aspect of marine science. Experts at the centre will work to validate OTAQ’s AI system for accurate quantitative imaging data and timely assessment of pathogenic marine species using in-house cutting-edge cytometry technology. We are proud to contribute to such an innovative system and set the initial milestone for monitoring live pathogenic planktons in fish farms.”

Real breakthrough
SAIC aquaculture innovation manager Caroline Griffin said: “This technology could prove a real breakthrough for aquaculture in all salmon-producing countries, enhancing fish wellbeing and health by tackling one of the biggest threats to stocks. In Scotland, it could underpin the Scottish Government’s Farmed Fish Health Framework over the next decade.
It builds on many of our previous projects around improving fish health and wellbeing, along with reducing the industry’s environmental impact by adopting new technologies from other sectors and applying them to aquaculture.”